Main Themes

- What Determines the Height of an EfW building?
- The Relationship between size and Generation Efficiency
- The Relationship between size and economics
What Determines Building Height?

1) Boiler Capacity

2) Building Design

The Boiler

- Steam Drum
- 850°C for 2 seconds
- Ammonia Injection
- Waste Bunker
- Exhaust Gases
Inside the Combustion Chamber

- Start Up Burner
- Secondary Air Nozzles
- Boiler nose
- Refractory Lining
- Moving grate

Height and Capacity

- 50 ktpa: 4 cms
- 100 ktpa: 5 cms
- 200 ktpa: 6.3 cms
Influence of Building Design

Riverside

Cleveland

Lakeside

Newhaven
Isle of Man Plant

Rookery South RRF
<table>
<thead>
<tr>
<th>EFW Plant</th>
<th>Total Capacity (1000tpa)</th>
<th>No. of Streams</th>
<th>Capacity per Stream (1000tpa)</th>
<th>Height (metres)</th>
<th>Height if Adjusted to Rookery Capacity</th>
<th>Technology Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jersey</td>
<td>105</td>
<td>2</td>
<td>53</td>
<td>38</td>
<td>58</td>
<td>CNIM</td>
</tr>
<tr>
<td>Isle of Man</td>
<td>65</td>
<td>1</td>
<td>65</td>
<td>35</td>
<td>50</td>
<td>Fisia Babcock (Noell grate)</td>
</tr>
<tr>
<td>Eastcroft</td>
<td>160</td>
<td>2</td>
<td>80</td>
<td>31</td>
<td>43</td>
<td>Martin</td>
</tr>
<tr>
<td>Portsmouth</td>
<td>165</td>
<td>2</td>
<td>83</td>
<td>32</td>
<td>43</td>
<td>CNIM</td>
</tr>
<tr>
<td>Coventry & Solihull</td>
<td>250</td>
<td>3</td>
<td>85</td>
<td>35</td>
<td>46</td>
<td>Martin</td>
</tr>
<tr>
<td>Marchwood</td>
<td>180</td>
<td>2</td>
<td>90</td>
<td>36</td>
<td>47</td>
<td>CNIM</td>
</tr>
<tr>
<td>London waste</td>
<td>550</td>
<td>5</td>
<td>110</td>
<td>42</td>
<td>51</td>
<td>Deutsche Babcock</td>
</tr>
<tr>
<td>Cleveland</td>
<td>250</td>
<td>2</td>
<td>125</td>
<td>42</td>
<td>49</td>
<td>Volund</td>
</tr>
<tr>
<td>Rookery</td>
<td>585</td>
<td>3</td>
<td>195</td>
<td>43</td>
<td>43</td>
<td>Fisia Babcock Steinmüller</td>
</tr>
<tr>
<td>Tyseley</td>
<td>400</td>
<td>2</td>
<td>200</td>
<td>42</td>
<td>42</td>
<td>Steinmüller</td>
</tr>
<tr>
<td>Lakeside</td>
<td>410</td>
<td>2</td>
<td>205</td>
<td>42</td>
<td>42</td>
<td>Takuma</td>
</tr>
<tr>
<td>Sheffield</td>
<td>220</td>
<td>1</td>
<td>220</td>
<td>49</td>
<td>48</td>
<td>CNIM</td>
</tr>
<tr>
<td>Riverside</td>
<td>660</td>
<td>3</td>
<td>220</td>
<td>51</td>
<td>50</td>
<td>Von Roll</td>
</tr>
</tbody>
</table>
Efficiency

The larger the plant, the higher the generation efficiency

This is because, as capacity increases:

- boiler heat loss per tonne/hour of waste decreases
- steam turbine efficiency increases
- thermal cycle efficiency increases

Steam Turbine
Typical Net Generation Efficiencies

- Small plants, 50 to 100 ktpa: 16% to 19%
- Medium plants, 100 to 300 ktpa: 19% to 24%
- Large Plants, >300 ktpa: 21% to 27%
- Coal fired power plants: ca. 34% (Electricity delivered to local grid)

Economics

The larger the plant, the lower the gate fee.

This is because, as capacity increases:

- Cost per tonne/hour (of waste) decreases
- Power output per tonne/hour increases
- Number of operators needed per tonne/hour decreases
- Cost of maintenance per tonne/hour decreases
Thank you